Respuesta :

Answer:

The adjacent angles are: 72 and 108

Step-by-step explanation:

Given

Angle Ratio = 3 : 2

Required

Find the measure of each angle

Let the angles be [tex]x\ and\ y.[/tex]

Such that:

[tex]x + y = 180[/tex] --- adjacent angles of a parallelogram

and

[tex]x : y = 3 : 2[/tex] --- given

Convert to fraction

[tex]\frac{x}{y} = \frac{3}{2}[/tex]

Cross Multiply:

[tex]2x = 3y[/tex]

Make x the subject:

[tex]x = \frac{3}{2}y[/tex]

[tex]x + y = 180[/tex] becomes

[tex]\frac{3}{2}y + y = 180[/tex]

Take LCM

[tex]\frac{3y + 2y}{2}= 180[/tex]

[tex]\frac{5y}{2}= 180[/tex]

[tex]y = \frac{2}{5} * 180[/tex]

[tex]y = 0.4 * 180[/tex]

[tex]y = 72[/tex]

Recall that:

[tex]x = \frac{3}{2}y[/tex]

[tex]x = \frac{3}{2} * 72[/tex]

[tex]x = 1.5 * 72[/tex]

[tex]x = 108[/tex]

Hence, the adjacent angles are: 72 and 108