Answer:
[tex]Probability = \frac{51}{65}[/tex]
Step-by-step explanation:
Given (Missing from the question)
[tex]\begin{array}{ccccc}{} & {Freshman} & {Sophomore} & {Junior} & {Senior} &{Left-handed batters} & {4} & {6} & {5} & {4} & {Right-handed batters} & {13} & {10} & {11} & {12}\ \end{array}[/tex]
[tex]Total = 65[/tex]
Required
Determine the probability of selecting a junior or right handed batter
From the table above:
[tex]R=13 + 10 + 11 + 12 =46[/tex] ---- Right handed
[tex]J = 5 + 11 = 16[/tex] --- Junior
[tex]R\ and\ J = 11[/tex] ---- Right handed and Junior
The probability of right handed player of junior player being selected is:
[tex]Probability = P(R) + P(J) - P(R\ and\ J)[/tex]
[tex]Probability = \frac{n(R) + n(J) - n(R\ and\ J)}{Total}[/tex]
[tex]Probability = \frac{46+16-11}{65}[/tex]
[tex]Probability = \frac{51}{65}[/tex]