Answer:
[tex]\boxed {\boxed {\sf 1440 \ Joules}}[/tex]
Explanation:
Kinetic energy can be found using this formula:
[tex]E_k= \frac{1}{2} mv^2[/tex]
The mass is 20 kilograms and the velocity is 12 meters per second.
[tex]m= 20 \ kg \\v= 12 \ m/s[/tex]
Substitute the values into the formula.
[tex]E_k= \frac{1}{2} (20 \ kg)(12 \ m/s)^2[/tex]
Solve the exponent first.
[tex]E_k= \frac{1}{2} (20 \ kg)(144 \ m^2/s^2)[/tex]
Multiply the numbers in parentheses.
[tex]E_k= \frac{1}{2} (2880 \ kg*m^2/s^2)[/tex]
Multiply by 1/2 or divide by 2.
[tex]E_k=1440 \ kg*m^2/s^2[/tex]
[tex]E_k= 1440 \ J[/tex]
The object's kinetic energy is 1440 Joules.