Respuesta :

Answer:

[tex]Distance = 3.75x[/tex]

[tex]({\frac{f}{g})(x) = x + 4[/tex]

Step-by-step explanation:

(4)

Given

[tex]Average\ Speed= x[/tex]

[tex]Time = 225\ mins[/tex]

Required

Determine the distance

This is calculated as:

[tex]Distance = Average\ Speed * Time[/tex]

Convert time to hour

[tex]Time = \frac{225}{60}[/tex]

[tex]Time = 3.75[/tex]

So:

[tex]Distance = Average\ Speed * Time[/tex]

[tex]Distance = x * 3.75[/tex]

[tex]Distance = 3.75x[/tex]

(5)

[tex]f(x) = x^2 + 3x - 4[/tex]

[tex]g(x) = x - 1[/tex]

Required

Find [tex]({\frac{f}{g})(x)[/tex]

This is calculated as:

[tex]({\frac{f}{g})(x) = \frac{f(x)}{g(x)}[/tex]

So:

[tex]({\frac{f}{g})(x) = \frac{x^2 + 3x - 4}{x-1}[/tex]

Expand

[tex]({\frac{f}{g})(x) = \frac{x^2 - x +4x - 4}{x-1}[/tex]

Factorize

[tex]({\frac{f}{g})(x) = \frac{x( x- 1) +4(x - 1)}{x-1}[/tex]

[tex]({\frac{f}{g})(x) = \frac{(x-1) (x + 4)}{x-1}[/tex]

[tex]({\frac{f}{g})(x) = x + 4[/tex]