Respuesta :

Answer:

[tex]Average = 30[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 4^{x - 1} + 2[/tex]

Required

Average [tex]rate\ of\ change[/tex] from 2 to 4

This is calculated using:

[tex]Average = \frac{f(b) - f(a)}{b - a}[/tex]

Where

[tex]a= 2[/tex]  and  [tex]b = 4[/tex]

So:

[tex]Average = \frac{f(4) -f(2)}{4 - 2}[/tex]

[tex]Average = \frac{f(4) -f(2)}{2}[/tex]

Calculate f(2) and f(4)

[tex]f(x) = 4^{x - 1} + 2[/tex]

[tex]f(2) = 4^{2-1} + 2[/tex]

[tex]f(2) = 4 + 2[/tex]

[tex]f(2) = 6[/tex]

[tex]f(4) = 4^{4-1} + 2[/tex]

[tex]f(4) = 4^3 + 2[/tex]

[tex]f(4) = 66[/tex]

So:

[tex]Average = \frac{f(4) -f(2)}{2}[/tex]

[tex]Average = \frac{66 - 6}{2}[/tex]

[tex]Average = \frac{60}{2}[/tex]

[tex]Average = 30[/tex]