Answer:
[tex]O = 14^\circ[/tex]
Step-by-step explanation:
Given
[tex]\angle Q = 90[/tex]
[tex]OP = 96[/tex]
[tex]PQ = 23[/tex]
Required
Find [tex]\angle O[/tex] to the nearest degree
To calculate O, we make use of:
[tex]sin(O) = \frac{PQ}{PO}[/tex] --- See attachment for triangle
[tex]sin(O) = \frac{23}{96}[/tex]
[tex]sin(O) = 0.2396[/tex]
Take arcsin of both sides
[tex]O = sin^{-1}(0.2396)[/tex]
[tex]O = 14^\circ[/tex] -- approximated