Respuesta :
Answer:
[tex]\displaystyle A = \frac{1}{2}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
- Equality Properties
Algebra I
- Terms/Coefficients
- Functions
- Function Notation
- Graphing
Calculus
Area - Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
*Note:
Remember that for the Area of a Region, it is top function minus bottom function.
Also remember that finding area and evaluating are two different things.
Step 1: Define
f(x) = x
g(x) = x³
Bounded (Partitioned) by x-axis
Step 2: Identify Bounds of Integration
Find where the functions intersect (x-values) to determine the bounds of integration.
Simply graph the functions to see where the functions intersect (See Graph Attachment).
Interval: [-1, 1]
1st Integral: [-1, 0]
2nd Integral: [0, 1]
Step 3: Find Area of Region
Integration.
- Substitute in variables [Area of a Region Formula]: [tex]\displaystyle A = \int\limits^0_{-1} {[x^3 - x]} \, dx + \int\limits^1_0 {[x - x^3]} \, dx[/tex]
- [Area] Rewrite Integrals [Integration Property - Subtraction]: [tex]\displaystyle A = (\int\limits^0_{-1} {x^3} \, dx - \int\limits^0_{-1} {x} \, dx) + (\int\limits^1_0 {x} \, dx - \int\limits^1_0 {x^3} \, dx)[/tex]
- [Area] [Integrals] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle A = [\frac{x^4}{4} \bigg|\limits^0_{-1} - (\frac{x^2}{2}) \bigg|\limits^0_{-1}]+ [\frac{x^2}{2} \bigg|\limits^1_0 - (\frac{x^4}{4}) \bigg|\limits^1_0][/tex]
- [Area] Evaluate [Integration Rule - FTC 1]: [tex]\displaystyle A = [\frac{-1}{4} - (\frac{-1}{2})] + [\frac{1}{2} - \frac{1}{4}][/tex]
- [Area] [Brackets] Add/Subtract: [tex]\displaystyle A = \frac{1}{4} + \frac{1}{4}[/tex]
- [Area] Add: [tex]\displaystyle A = \frac{1}{2}[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Area Under the Curve - Area of a Region (Integration)
Book: College Calculus 10e
