Answer:
See explanation
Explanation:
For first order reaction;
ln[A] = ln [A]o - kt
Where;
[A] = concentration at time = t
[A]o = initial concentration
k = rate constant
t = time taken
i) ln[A] = ln( 3.2×10−3 M) - (1.02×10−5/s * 6 * 60 * 60)
ln[A] = -5.745 - 0.22
[A] = e^-5.965
[A] = 2.6 * 10^-3
ii) Now, Amount reacted = 0.25 * 3.2×10−3 M = 8 * 10^-4 M
[A] = 3.2×10−3 M - 8 * 10^-4 M
[A] = 2.4 ×10−3 M
ln[A] = ln [A]o - kt
ln[A] - ln [A]o = - kt
t = ln[A] - ln [A]o/-k
t = ln(2.4 ×10−3 M) -ln (3.2×10−3 M)/-(1.02×10−5/s)
t= -6.032 - (-5.745)/-(1.02×10−5/s)
t = -0.287/-(1.02×10−5/s)
t = 468.95 minutes
iii) t = ln[A] - ln [A]o/-k
t = ln(3.15×10−3 M) - ln (3.2×10−3 M)/-(1.02×10−5/s)
t = -5.760 - (-5.745)/-(1.02×10−5/s)
t = -0.015/-(1.02×10−5/s)
t = 0.41 hours