A potter's wheel is rotating around a vertical axis through its center at a frequency of 2.0 rev/srev/s . The wheel can be considered a uniform disk of mass 4.5 kgkg and diameter 0.30 mm . The potter then throws a 2.8-kgkg chunk of clay, approximately shaped as a flat disk of radius 8.0 cmcm , onto the center of the rotating wheel. Part A What is the frequency of the wheel after the clay sticks to it

Respuesta :

Answer:1.7 rev/s

Explanation:

Given

Frequency of wheel [tex]N_1=2\ rev/s[/tex]

angular speed [tex]\omega_1=2\pi N_1=4\pi\ rad/s[/tex]

mass of wheel [tex]m_1=4.5\ kg[/tex]

diameter of wheel [tex]d_1=0.30\ m=30\ cm[/tex]

radius of wheel [tex]r_1=\frac{d_1}{2}=\frac{30}{2}=15\ cm[/tex]

mass of clay [tex]m_2=2.8\ kg[/tex]

the radius of the chunk of clay [tex]r_2=8\ cm[/tex]

Moment of inertia of Wheel

[tex]I_1=\dfrac{m_1r_1^2}{2}=\dfrac{4.5\times 15^2}{2}\ kg-cm^2[/tex]

Combined moment of inertia of wheel and clay chunk

[tex]I_2=\dfrac{m_1r_1^2}{2}+\dfrac{m_2r_2^2}{2}=\dfrac{4.5\times 15^2}{2}+\dfrac{2.8\times 8^2}{2}\ kg-cm^2[/tex]

Conserving angular momentum

[tex]\Rightarrow I_1\omega_1=I_2\omega_2\\\Rightarrow \dfrac{4.5\times 15^2}{2}\cdot 4\pi=(\dfrac{4.5\times 15^2}{2}+\dfrac{2.8\times 8^2}{2})\omega_2\\\\\Rightarrow \omega _2=\dfrac{4\pi }{1+\dfrac{2.8}{4.5}\times (\dfrac{8}{15})^2}=\dfrac{4\pi}{1+0.1769}=0.849\times 4\pi[/tex]

Common frequency of wheel and chunk of clay is

[tex]\Rightarrow N_2=\dfrac{4\pi \times 0.849}{2\pi}=1.698\approx 1.7\ rev/s[/tex]