Drag the tiles to the boxes to form correct pairs.
Consider functions f and g
1) = 1 - 2
9(s) = VII - 41
Evaluate each combined function, and match it to the corresponding value
(-1
)
>
0
(9 + 1)(2)
→ 73
(-1)(-1)
VE
(9.5)(2)
--373

Drag the tiles to the boxes to form correct pairs Consider functions f and g 1 1 2 9s VII 41 Evaluate each combined function and match it to the corresponding v class=

Respuesta :

Answer:

Step-by-step explanation:

f(x) = 1 - x²

g(x) = [tex]\sqrt{11-4x}[/tex]

[tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}[/tex]

[tex](\frac{f}{g})(x)=\frac{1-x^2}{\sqrt{11-4x}}[/tex]

[tex](\frac{f}{g})(-1)=\frac{1-(-1)^2}{\sqrt{11-4(-1)}}[/tex]

             = [tex]\frac{1-1}{\sqrt{15}}[/tex]

             = 0

(g + f)(x) = g(x) + f(x)

             = [tex]\sqrt{11-4x}+1-x^2[/tex]

(g + f)(2) = [tex]\sqrt{11-4(2)}+1-(2)^2[/tex]

             = [tex]\sqrt{3}-3[/tex]

(g - f)(x) = g(x) - f(x)

            = [tex]\sqrt{11-4x}-(1-x^2)[/tex]

            = [tex]\sqrt{11-4x}-1+x^2[/tex]

(g - f)(-1) = [tex]\sqrt{11-4(-1)}-1+(-1)^2[/tex]

             = [tex]\sqrt{15}[/tex]

(g . f)(x) = g(x) × f(x)

            = [tex](\sqrt{11-4x})(1-x^2)[/tex]

(g . f)(2) = [tex](\sqrt{11-4(2)})(1-(2)^2)[/tex]

             = [tex]\sqrt{3}(-3)[/tex]

             = -3√3

Answer:

0

3-3

15

3(-3)

Step-by-step explanation:

easier to read