Respuesta :

Answer:

36.86989765

Step-by-step explanation:

As Angle GBC = Angle CDF = 45, so CF = CD as it is an isosceles right triangle  , then as sin(45) = 1/root(2), so CF = 12, then tan(angle ECF) = FE/CF = 9/12, then angle ECF = tan^-1 (9/12) = 36.86989765.

If it is helpful, plz give me Brainliest.

By using properties of similar triangles and trigonometric function we got that [tex]\angle ECF=37[/tex] degree.

What are similar triangles ?

Similar triangle are those triangles whose shape is same .

Here in triangle ABC and EDC

[tex]\angle A=\angle E\\\angle B= \angle D\\[/tex]

(alternate angles)

and

[tex]\angle ACB=\angle ECD[/tex]

(vertically opposite angles)

Hence by AAA rule

[tex]\triangle ABC \sim \triangle EDC[/tex]

Now by properties of similar triangles

[tex]\frac{AC}{CE} =\frac{BC}{CD}[/tex]

in [tex]\triangle AGC[/tex]

[tex]AC^2=4^2+3^2\\\\AC=5[/tex]

in [tex]\triangle BGC[/tex]

BG=7-4=3

[tex]BC^2=4^2+4^2\\\\BC=4\sqrt2[/tex]

Now

[tex]\frac{AC}{CE} =\frac{BC}{CD}[/tex]

[tex]\frac{5}{CE} =\frac{4\sqrt2}{12\sqrt2}[/tex]

[tex]CE=5\times 3[/tex]

[tex]CE=15[/tex]

in [tex]\triangle EFC[/tex]

[tex]Sin C= \frac{EF}{EC}[/tex]

Sin C = 9/ 15

Sin C= 3/5

[tex]\angle C \approx 37[/tex] degree

By using properties of similar triangles and trigonometric function we got that [tex]\angle ECF=37[/tex] degree.

To learn more about similar triangles visit : https://brainly.com/question/14285697