Respuesta :
Answer: cot(a)cot(ß)-1
Step-by-step explanation:
[tex]\csc\alpha\csc\beta\cos(\alpha+\beta)=(\sin\alpha)^{-1}(\sin\beta)^{-1}\cos(\alpha+\beta)\\=(\sin\alpha\sin\beta)^{-1}\cos(\alpha+\beta)\\=\frac{\cos\alpha\cos\beta-\sin\alpha\sin\beta}{\sin\alpha\sin\beta}\\=\frac{\cos\alpha\cos\beta}{\sin\alpha\sin\beta}-1\\=\cot\alpha\cot\beta-1[/tex]
Hi there!
[tex]\large\boxed{cot(a)cot(b)-1}[/tex]
We can begin by simplifying cos(a + b) to find an equivalent expression.
With a sum of angles identity for cosine, we can determine that:
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
In this instance, we have to multiply this expression by csc(a)csc(b). Therefore:
(csc(a)csc(b)) · (cos(a)(cos(b) - sin(a)sin(b))
Distribute:
(csc(a)(csc(b))(cos(a)(cos(b)) - (csc(a)csc(b))(sin(a)sin(b))
Rewrite csc as 1/sin to simplify:
(1/sin(a) * 1/sin(b))(cos(a)(cos(b)) - (1/sin(a) * 1/sin(b))(sin(a)sin(b))
Multiply:
cos(a)/sin(a) * cos(b)/sin(b) - 1/sin(a) * sin(a) * 1/sin(b)*sin(b) <--- = 1
We now have remaining:
cos(a) / sin(a) * cos(b)/sin(b) - 1
Simplify to cotangent:
cot(a) * cot(b) - 1