Respuesta :

Answer:8/15

Step-by-step explanation:

1,3,5,7,9,11,13,15

[tex]{\red{\underline{\underline{\tt{\large{SOLUTION:}}}}}}[/tex]

Numbers from 1-15. The sample space:

[tex]\implies[/tex] S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

[tex]\implies[/tex] n(S) = 15

Let A be the event that number selected randomly from the numbers 1 to 15.

Event A:

Odd numbers from 1-15. The sample space:

[tex]\implies[/tex] A = {1, 3, 5, 7, 9, 11, 13, 15}

[tex]\implies[/tex] n(A) = 8

Now, as we know that;

[tex] \star \: {\underline{\boxed{\frak{\pmb{\quad Probability \: p(A) = \frac{n(A)}{n(S)} }}}}}[/tex]

Placing values,

[tex]\implies\sf{p(A) = \frac{n(A)}{n(S)} }[/tex]

[tex]\implies\sf{p(A) = \frac{8}{15} } \: \red \star[/tex]