help!
solve for:
sin (pi/4 -x) - sin (x + pi/4) for 0 < x < 2pi

Answer:
sin(pi/4 - x) - sin(x + pi/4) = 1
[tex] \frac{ \sqrt{2} }{2} ( \cos(x) - \sin(x) ) - \frac{ \sqrt{2} }{2} ( \sin(x) + \cos(x) ) = 1 \\ \\ < = > - 2 \times \frac{ \sqrt{2} }{2} \sin(x) = 1 \\ \\ < = > \sin(x) = \frac{ - 1}{ \sqrt{2} } \\ \\ < = > x = - \frac{\pi}{4} + k2\pi \: or \: x = \frac{5\pi}{4} + k2\pi[/tex]
but 0 < x< 2pi => x = { 5pi/4; 7pi/4 }