Respuesta :

Answer:

-20/3

Step-by-step explanation:

First simplify the left side of the equation

243^(1/5x)= (243^1/5)^x

                =([tex]\sqrt[5]{243}[/tex] )^x

                = 3^x

Now that the left side is simplified,  let's move to the right side

81^(x+5)=( [tex]3^{4}[/tex])^(x+5) simplify 81 to base 3^4

             =[tex]x^{4(x+5)[/tex] use the product of powers property to multiply the exponents together

             =[tex]x^{4x+20[/tex]

With both sides simplified, let's rewrite the equation, this time in simplified terms

[tex]3^{x}[/tex]=[tex]3^{4x+20}[/tex]            

x=4x+20    because both the bases are same, their exponential value must also be equal

-3x=20 solve the algebraic equation for x

  x=[tex]-\frac{20}{3}[/tex]