Answer:
[tex]|z| < 6[/tex] for [tex]f(z) =\frac{6}{6 - z}[/tex]
Step-by-step explanation:
Given
[tex]1+\frac{z}{6}+\frac{z^2}{36}+\frac{z^3}{216}+.....[/tex]
Required
The value at which the series converges
Calculate r
[tex]r = \frac{z}{6}/1[/tex]
[tex]r = \frac{z}{6}[/tex]
For a series to converge:
[tex]|r| < 1[/tex]
This gives:
[tex]|\frac{z}{6}| < 1[/tex]
[tex]\frac{1}{6}|z| < 1[/tex]
Multiply both sides by 6
[tex]6 * \frac{1}{6}|z| < 1 * 6[/tex]
[tex]|z| < 6[/tex]
This is calculated using the sum to infinity of a gp.
[tex]S = \frac{a}{1- r}[/tex]
Where [tex]a=1[/tex]
So:
[tex]S = \frac{1}{1 - \frac{z}{6}}[/tex]
Take LCM
[tex]S = \frac{1}{\frac{6 - z}{6}}[/tex]
Rewrite as:
[tex]S = 1 * {\frac{6}{6 - z}}[/tex]
[tex]S =\frac{6}{6 - z}[/tex]
So, the function converges at:
[tex]|z| < 6[/tex] for [tex]f(z) =\frac{6}{6 - z}[/tex]