Respuesta :

Answer:

[tex]768\pi = 1024\pi - 16\pi r^2[/tex]

[tex]r = 4[/tex]

Step-by-step explanation:

See attachment for complete question

Given

[tex]v = 1.024\pi - 16\pi r^2[/tex]

Required

Determine the equation and solution when v = 768

[tex]v = 1024\pi - 16\pi r^2[/tex]

Substitute [tex]768\pi[/tex] for v

[tex]768\pi = 1024\pi - 16\pi r^2[/tex]

The above expression represents the equation

Solving further:

[tex]768\pi = 1024\pi - 16\pi r^2[/tex]

Collect like terms

[tex]16\pi r^2 = 1024\pi - 768\pi[/tex]

[tex]16\pi r^2 = 256\pi[/tex]

Divide both sides by [tex]16\pi[/tex]

[tex]r^2 = \frac{256\pi}{16\pi}[/tex]

[tex]r^2 = \frac{256}{16}[/tex]

[tex]r^2 = 16[/tex]

Take square roots of both sides

[tex]r = \sqrt{16[/tex]

[tex]r = 4[/tex]

Ver imagen MrRoyal