Answer:
[tex]\displaystyle \frac{dy}{dx} \bigg| \limit_{(1, 4)} = 2[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Coordinates (x, y)
- Exponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]
- Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Implicit Differentiation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle \sqrt{x} - \sqrt{y} = -1[/tex]
Point (1, 4)
Step 2: Differentiate
- [Function] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle x^{\frac{1}{2}} - y^{\frac{1}{2}} = -1[/tex]
- [Implicit Differentiation] Basic Power Rule: [tex]\displaystyle \frac{1}{2}x^{\frac{1}{2} - 1} - \frac{1}{2}y^{\frac{1}{2} - 1}\frac{dy}{dx} = 0[/tex]
- [Implicit Differentiation] Simplify Exponents: [tex]\displaystyle \frac{1}{2}x^{\frac{-1}{2}} - \frac{1}{2}y^{\frac{-1}{2}}\frac{dy}{dx} = 0[/tex]
- [Implicit Differentiation] Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle \frac{1}{2x^{\frac{1}{2}}} - \frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = 0[/tex]
- [Implicit Differentiation] Isolate y terms: [tex]\displaystyle -\frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx} = -\frac{1}{2x^{\frac{1}{2}}}[/tex]
- [Implicit Differentiation] Isolate [tex]\displaystyle \frac{dy}{dx}[/tex]: [tex]\displaystyle \frac{dy}{dx} = \frac{2y^{\frac{1}{2}}}{2x^{\frac{1}{2}}}[/tex]
- [Implicit Differentiation] Simplify: [tex]\displaystyle \frac{dy}{dx} = \frac{y^{\frac{1}{2}}}{x^{\frac{1}{2}}}[/tex]
Step 3: Evaluate
- Substitute in point [Derivative]: [tex]\displaystyle \frac{dy}{dx} = \frac{(4)^{\frac{1}{2}}}{(1)^{\frac{1}{2}}}[/tex]
- Exponents: [tex]\displaystyle \frac{dy}{dx} = \frac{2}{1}[/tex]
- Division: [tex]\displaystyle \frac{dy}{dx} = 2[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Implicit Differentiation
Book: College Calculus 10e