Respuesta :
Answer:
[tex]\displaystyle f'(0) = 2[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Function
- Function Notation
Pre-Calculus
- Arctrig notation
Calculus
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Arctrig Derivative: [tex]\displaystyle \frac{d}{dx}[arcsinu] = \frac{u'}{\sqrt{1 - u^2}}[/tex]
Step-by-step explanation:
Step 1: Define
[tex]\displaystyle f(x) = sin^{-1}(2x)[/tex]
f'(0) is x = 0 for the 1st derivative function
Step 2: Differentiate
- [Derivative] Arctrig Derivative [Derivative Rule - Chain Rule]: [tex]\displaystyle f'(x) = \frac{\frac{d}{dx}[2x]}{\sqrt{1 - (2x)^2}}[/tex]
- [Derivative] Basic Power Rule: [tex]\displaystyle f'(x) = \frac{1 \cdot 2x^{1 - 1}}{\sqrt{1 - (2x)^2}}[/tex]
- [Derivative] Simplify: [tex]\displaystyle f'(x) = \frac{2}{\sqrt{1 - 4x^2}}[/tex]
Step 3: Evaluate
- Substitute in x [Derivative]: [tex]\displaystyle f'(0) = \frac{2}{\sqrt{1 - 4(0)^2}}[/tex]
- [√Radical] Exponents: [tex]\displaystyle f'(0) = \frac{2}{\sqrt{1 - 4(0)}}[/tex]
- [√Radical] Multiply: [tex]\displaystyle f'(0) = \frac{2}{\sqrt{1}}[/tex]
- [Fraction] Square Root: [tex]\displaystyle f'(0) = \frac{2}{1}[/tex]
- [Fraction] Division: [tex]\displaystyle f'(0) = 2[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Integration - Special Functions (Arctrig)
Book: College Calculus 10e