Respuesta :

Answer:

[tex]y=\frac{1}{6}x+\frac{2}{3}[/tex]

Step-by-step explanation:

(8,2) (2,1)

First, you will need to find the gradient (or the m value in [tex]y=mx+b[/tex])

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

y2=1

y1=2

x2=2

x1=8

Now we can plug in these values to get the m value.

[tex]m=\frac{1-2}{2-8}[/tex]

Because the numerator and the denoinator will be negative, we needed to divide them to get a positive fraction.

[tex]m=\frac{-1}{-6} \\m=\frac{1}{6}[/tex]

Now we need to find the line of the equation using the following equation:

[tex]y-y1=m(x-x1)[/tex]

Now plug in the values using x1 and y1.

[tex]y-2=\frac{1}{6} (x-8)[/tex]

We can use the distributive property to distribute the [tex]\frac{1}{6}[/tex].

[tex]y-2=\frac{1}{6}x-\frac{4}{3}[/tex]

Lastly, we can add 2 to both sides to cancel out the -2 on the left to give us our equation.

[tex]y=\frac{1}{6}x+\frac{2}{3}[/tex]