Respuesta :

Answer:

x = 4[tex]\sqrt{6}[/tex] , y = 8[tex]\sqrt{2}[/tex]

Step-by-step explanation:

Using the sine ratio in the right triangle on the left and the exact value

sin45° = [tex]\frac{\sqrt{2} }{2}[/tex]

let the altitude of the outer triangle be h ( common to both right triangles )

sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{h}{8}[/tex] = [tex]\frac{\sqrt{2} }{2}[/tex] ( cross- multiply )

2h = 8[tex]\sqrt{2}[/tex] ( divide both sides by 2 )

h = 4[tex]\sqrt{2}[/tex]

----------------------------------------------------------------

Using the tangent ratio in the right triangle on the right and the exact value

tan30° = [tex]\frac{1}{\sqrt{3} }[/tex] , then

tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{h}{x}[/tex] = [tex]\frac{4\sqrt{2} }{x}[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex] ( cross- multiply )

x = 4[tex]\sqrt{6}[/tex]

--------------------------------------------------------------------

Using the sine ratio in the right triangle on the right and the exact value

sin30° = [tex]\frac{1}{2}[/tex] , then

sin30° = [tex]\frac{h}{y}[/tex] = [tex]\frac{4\sqrt{2} }{y}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )

y =8[tex]\sqrt{2}[/tex]

Otras preguntas