9514 1404 393
Explanation:
We can start with the relations ...
[tex]\displaystyle\left(x+\frac{1}{x}\right)^3=\left(x^3+\frac{1}{x^3}\right)+3\left(x+\frac{1}{x}\right)\\\\\left(x+\frac{1}{x}\right)^5=\left(x^5+\frac{1}{x^5}\right)+5\left(x^3+\frac{1}{x^3}\right)+10\left(x+\frac{1}{x}\right)\\\\\textsf{From these, we can derive ...}\\\\x^5+\frac{1}{x^5}=\left(x+\frac{1}{x}\right)^5-5\left(\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right)\right)-10\left(x+\frac{1}{x}\right)[/tex]
[tex]\displaystyle x^5+\frac{1}{x^5}=\left(x+\frac{1}{x}\right)^5-5\left(x+\frac{1}{x}\right)^3+5\left(x+\frac{1}{x}\right)\right)\\\\x^5+\frac{1}{x^5}=3^5 -5(3^3)+5(3)\\\\=((3^2-5)3^2+5)\cdot3=(4\cdot9+5)\cdot3=(41)(3)\\\\=\boxed{123}[/tex]