Answer: The enthalpy of combustion, per mole, of butane is -2657.4 kJ
Explanation:
The balanced chemical reaction is,
[tex]2C_4H_{10}(g)+13O_2(g)\rightarrow 8CO_2(g)+10H_2O(g)[/tex]
The expression for enthalpy change is,
[tex]\Delta H=[n\times H_f_{products}]-[n\times H_f_{reactants}][/tex]
Putting the values we get :
[tex]\Delta H=[8\times H_f_{CO_2}+10\times H_f_{H_2O}]-[2\times H_f_{C_4H_{10}+13\times H_f_{O_2}}][/tex]
[tex]\Delta H=[(8\times -393.5)+(10\times -241.82)]-[(2\times -125.7)+(13\times 0)][/tex]
[tex]\Delta H=-5314.8kJ[/tex]
2 moles of butane releases heat = 5314.8 kJ
1 mole of butane release heat = [tex]\frac{5314.8}{2}\times 1=2657.4kJ[/tex]
Thus enthalpy of combustion per mole of butane is -2657.4 kJ