A person holds a gallon of milk with a mass of 3 kg away from their body so that their forearm is completely parallel with the ground. The length of the forearm is .38 meters. The biceps brachii attaches to the forearm 4 cm from the elbow at an angle of 60 deg. How much force must be exerted by the bicep in order to keep the forearm level while holding the milk

Respuesta :

Answer:

"322.5 N" is the appropriate solution.

Explanation:

The given values are:

Mass,

m = 3 kg

Length of forearm,

= .38 meters

Angle,

= 60°

As we know,

⇒  [tex]FSin60^{\circ}\times 0.04=mg\times 0.38[/tex]

⇒                       [tex]F =\frac{mg\times 0.38}{Sin60^{\circ}\times 0 .04}[/tex]

On substituting the values, we get

⇒                           [tex]=\frac{3\times 9.8\times 0.38}{0.04\times \frac{\sqrt{3}}{2}}[/tex]

⇒                           [tex]=\frac{11.172}{0.0346}[/tex]

⇒                           [tex]=322.5 \ N[/tex]