Answer:
1 small box
5 medium box
2 large box
Step-by-step explanation:
Let x be the small box, y be the medium box and z be the large box.
So, we have:
[tex]\begin{array}{cccc}{} & {Oatmeal} & {Chocolate} & {Shortbread} & {x} & {1} & {1} & {0} & {y} & {2} & {1} & {1}& {z} & {2} & {2} & {3} & {Total} & {15} & {10} & {11} \ \end{array}[/tex]
From the above table, we have the following equations:
Oatmeal:
[tex]x + 2y + 2z = 15[/tex] --- (1)
Chocolate Chip
[tex]x + y + 2z = 10[/tex] --- (2)
Shortbread
[tex]y + 3z = 11[/tex] --- (3)
Make y the subject in (3)
[tex]y =11 - 3z[/tex]
Substitute [tex]y =11 - 3z[/tex] in (1) and (2)
[tex]x + 2y + 2z = 15[/tex] --- (1)
[tex]x + 2(11-3z) + 2z = 15[/tex]
[tex]x + 22 - 6z + 2z = 15[/tex]
[tex]x -6z +2z = 15 - 22\\[/tex]
[tex]x-4z = -7[/tex]
[tex]x = 4z - 7[/tex] --- (4)
[tex]x + y + 2z = 10[/tex] --- (2)
[tex]x + 11 - 3z + 2z = 10[/tex]
[tex]x - 3z + 2z = 10 - 11[/tex]
[tex]x -z = -1[/tex]
[tex]x = z - 1[/tex] --- (5)
Equate (4) and (5)
[tex]4z - 7 = z - 1[/tex]
[tex]4z - z = 7 - 1[/tex]
[tex]3z = 6[/tex]
[tex]z = 2[/tex]
Substitute [tex]z = 2[/tex] in (5)
[tex]x = z - 1[/tex] --- (5)
[tex]x =2-1[/tex]
[tex]x =1[/tex]
Substitute [tex]z = 2[/tex] in [tex]y =11 - 3z[/tex]
[tex]y = 11 - 3 * 2[/tex]
[tex]y = 11 - 6[/tex]
[tex]y = 5[/tex]
So, the solution is:
[tex]x =1[/tex] [tex]y = 5[/tex] [tex]z = 2[/tex]