Answer:
(31.25 ; 94.75)
Step-by-step explanation:
Given :
Sample size, n1 = 18
Mean, x1 = 457
Standard deviation, s1 = 38
Sample size, n2 = 12
Mean, x2 = 394
Standard deviation, s2 = 23
Confidence interval :
x1 - x2 ± Tcritical * Standard Error
x1 - x2 = 457 - 394 = 63
Standard Error = sqrt[(s1²/n1 + s2²/n2)]
Standard Error = sqrt((38^2/18)+ (23^2/12)) =11.149
Tcritical = Tα/2, df
df = n1 + n2 - 2 = 18 + 12 - 2 = 28
Using the Tcritical value calculator :
Tcritical at 0.01, 28 = 2.763
Confidence interval :
x1 - x2 ± Tcritical * Standard Error
63 ± (2.763*11.149)
63 ± 31.74687
Lower boundary = 63 - 31.74687 = 31.253
Upper boundary = 63 + 31.74687 = 94.747
(31.25; 94.75)