Answer:
[tex]tan(S)= \frac{28}{45}[/tex]
[tex]tan(R) = \frac{45}{28}[/tex]
Step-by-step explanation:
Given
[tex]RS = 53[/tex]
[tex]ST = 45[/tex]
[tex]RT =28[/tex]
See attachment for triangle
Solving (a): The tangent of S
Using tan formula:
[tex]tan\theta = \frac{Opposite}{Adjacent}[/tex]
So:
[tex]tan(S) = \frac{RT}{ST}[/tex]
[tex]tan(S)= \frac{28}{45}[/tex]
Solving (b): The tangent of R
Using tan formula:
[tex]tan\theta = \frac{Opposite}{Adjacent}[/tex]
So:
[tex]tan(R) = \frac{ST}{RT}[/tex]
[tex]tan(R) = \frac{45}{28}[/tex]