Question:
Evaluate n!/r!(n-r)!=[ ] for n=4 and r= 1 (Simplify your answer.)
Answer:
[tex]\frac{n!}{r!(n-r)!} = 4[/tex]
Step-by-step explanation:
Given
[tex]n = 4[/tex] [tex]r = 1[/tex]
Required
Evaluate [tex]\frac{n!}{r!(n-r)!}[/tex]
The solution is as follows:
[tex]\frac{n!}{r!(n-r)!} = \frac{4!}{1!(4-1)!}[/tex]
[tex]\frac{n!}{r!(n-r)!} = \frac{4!}{1!*3!}[/tex]
Evaluate each factorial
[tex]\frac{n!}{r!(n-r)!} = \frac{4*3*2*1}{1*3*2*1}[/tex]
[tex]\frac{n!}{r!(n-r)!} = \frac{4}{1}[/tex]
[tex]\frac{n!}{r!(n-r)!} = 4[/tex]