Respuesta :

Answer:

[tex]y=20(2)^x[/tex]

Step-by-step explanation:

We want to write an exponential function that goes through the points (0, 20) and (6, 1280).

The standard exponential function is given by:

[tex]y=ab^x[/tex]

The point (0, 20) tells us that y = 20 when x = 0. Hence:

[tex]20=a(b)^0[/tex]

Simplify:

[tex]20=a(1)\Rightarrow a=20[/tex]

So, our exponential function is now:

[tex]y=20(b)^x[/tex]

Next, the point (6, 1280) tells us that y = 1280 when x = 6. Thus:

[tex]1280=20(b)^6[/tex]

Solve for b. Divide both sides by 20:

[tex]64=b^6[/tex]

Therefore:

[tex]b=\sqrt[6]{64}=2[/tex]

Hence, our function is:

[tex]y=20(2)^x[/tex]