What is the exact value for the expression the square root of 56. − the square root of 14. + the square root of 126.? Simplify if possible.

the square root of 14.

4 the square root of 14.

2 the square root of 42.

8 the square root of 42.

...?

Respuesta :

sqr root of 56 - sqr root of 14 + sqr root of 126= sqr root of (4x14) - sqr root of 14 + sqr root of (9x14)= 2(sqr root of 14) - (sqr root of 14) + 3(sqr root of 14)= 4(sqr root of 14)
The right answer will be B.

Answer:

B-  [tex]\sqrt(56)-\sqrt(14)+\sqrt(126)=14.966[/tex]

Step-by-step explanation:

Given equation : square root of 56 − the square root of 14 + the square root of 126    or     [tex]\sqrt(56)-\sqrt(14)+\sqrt(126)[/tex]

Solution of the equation :

[tex]\sqrt(56)-\sqrt(14)+\sqrt(126)[/tex]

= [tex]2\sqrt(14)-\sqrt(14)+3\sqrt(14)[/tex]

= [tex]\sqrt(14)(2-1+3)[/tex]

= [tex]4\sqrt(14)[/tex]

=14.966

Now,

  • square root of 14 =√14 =3.741
  • 4 the square root of 14 = 4√14 = 14.966
  • 2 the square root of 42= 2√42 = 12.961
  • 8 the square root of 42 = 8√42= 51.845

Therefore, Option B is correct