Respuesta :
A - area of a segment formed by a side of the hexagon and the circle
A = {area of a sector of a circle} - {area of an equilateral triangle}
[tex]A= \frac{r^2\pi\alpha}{360^o} - \frac{r^2\sqrt{3}}{4}= \frac{3^2\pi 60^o}{360^o} - \frac{3^2\sqrt{3}}{4}=\frac{9\pi }{6} - \frac{9\sqrt{3}}{4}= \frac{9}{2} (\frac{\pi }{3} - \frac{\sqrt{3}}{2})[/tex]
A = {area of a sector of a circle} - {area of an equilateral triangle}
[tex]A= \frac{r^2\pi\alpha}{360^o} - \frac{r^2\sqrt{3}}{4}= \frac{3^2\pi 60^o}{360^o} - \frac{3^2\sqrt{3}}{4}=\frac{9\pi }{6} - \frac{9\sqrt{3}}{4}= \frac{9}{2} (\frac{\pi }{3} - \frac{\sqrt{3}}{2})[/tex]

Answer:
A = { 3/2 π - 9/4 √ 3 } in^2
Step-by-step explanation:
Hope it helps, sorry for answering late.