Respuesta :
The answer is 1 + √2
sqrt(2) is [tex] \sqrt{2} [/tex]
sqrt(3 + 2 sqrt 2) is [tex] \sqrt{3 +2 \sqrt{2} } [/tex]
Now, let's simplify [tex] \sqrt{3 +2 \sqrt{2} } [/tex].
We will use square of sum: (a + b)² = a² + 2ab + b²
[tex]\sqrt{3 +2 \sqrt{2} } = \sqrt{1+2+2 \sqrt{2} }= \sqrt{1+2 \sqrt{2}+2 }= \\ = \sqrt{1^{2} +2*1* \sqrt{2} + (\sqrt{2} ) ^{2} } = \sqrt{(1+ \sqrt{2}) ^{2}} =1+ \sqrt{2}[/tex]
sqrt(2) is [tex] \sqrt{2} [/tex]
sqrt(3 + 2 sqrt 2) is [tex] \sqrt{3 +2 \sqrt{2} } [/tex]
Now, let's simplify [tex] \sqrt{3 +2 \sqrt{2} } [/tex].
We will use square of sum: (a + b)² = a² + 2ab + b²
[tex]\sqrt{3 +2 \sqrt{2} } = \sqrt{1+2+2 \sqrt{2} }= \sqrt{1+2 \sqrt{2}+2 }= \\ = \sqrt{1^{2} +2*1* \sqrt{2} + (\sqrt{2} ) ^{2} } = \sqrt{(1+ \sqrt{2}) ^{2}} =1+ \sqrt{2}[/tex]
Answer:
[tex]1+\sqrt{2}[/tex]
Step-by-step explanation:
We have been given a radical expression [tex]\sqrt{3+2\sqrt{2}}[/tex]. We are asked to simplify the given expression.
We will add [tex](\sqrt{2})^2-2[/tex] to our given expression as after adding and subtracting same quantity the value of our expression will be same.
[tex]\sqrt{3+2\sqrt{2}+(\sqrt{2})^2-2}[/tex]
[tex]\sqrt{3-2+2\sqrt{2}+(\sqrt{2})^2}[/tex]
[tex]\sqrt{1+2\sqrt{2}+(\sqrt{2})^2}[/tex]
Using perfect square formula [tex](a+b)^2=a^2+2ab+b^2[/tex] we can rewrite our expression as:
[tex]\sqrt{1^2+2\sqrt{2}\cdot 1+(\sqrt{2})^2}[/tex]
[tex]\sqrt{(1+\sqrt{2})^2}[/tex]
Applying radical rule [tex]\sqrt[n]{x^n} =x[/tex], we will get,
[tex](1+\sqrt{2})^{\frac{2}{2}}=1+\sqrt{2}[/tex]
Therefore, the simplified form of our given expression would be [tex]1+\sqrt{2}[/tex].