Respuesta :
The answer is n.
If: [tex]log_x(y^{z}) = z*log_x(y) [/tex]
Then: [tex]log_b( b^{n}) = n*log_b(b) [/tex]
If: [tex]log_x(y) = \frac{log_z(y)}{log_z(x)} [/tex]
Then: [tex]log_b(b) = \frac{log_z(b)}{log_z(b)} =1[/tex]
Therefore:
[tex]log_b( b^{n}) = n*log_b(b) =n*1=n[/tex]
If: [tex]log_x(y^{z}) = z*log_x(y) [/tex]
Then: [tex]log_b( b^{n}) = n*log_b(b) [/tex]
If: [tex]log_x(y) = \frac{log_z(y)}{log_z(x)} [/tex]
Then: [tex]log_b(b) = \frac{log_z(b)}{log_z(b)} =1[/tex]
Therefore:
[tex]log_b( b^{n}) = n*log_b(b) =n*1=n[/tex]
Answer:
[tex]log_{b} b^{n}[/tex] = n.
Step-by-step explanation:
Given : [tex]log_{b} b^{n}[/tex] , b is any positive number not equal to 1 and n is any number.
To find : Evaluate the expression [tex]log_{b} b^{n}[/tex].
Formula used : [tex]log_{b} x^{y}[/tex]. = y ∙ [tex]log_{b}[/tex](x) and
[tex]log_{b}(b) = 1.
Solution : We have [tex]log_{b} b^{n}[/tex].
By logarithm rule : [tex]log_{b} x^{y}[/tex]. = y ∙ [tex]log_{b}[/tex](x).
Then [tex]log_{b} b^{n}[/tex] = n∙ [tex]log_{b}[/tex](b).
By logarithm rule : [tex]log_{b}(b) = 1.
Now, n∙ [tex]log_{b}[/tex](b) = n.
Therefore, [tex]log_{b} b^{n}[/tex] = n.