Respuesta :
(1).. 2x + 4y - 3z = -7
(2).. 3x + 1y + 4z = -12
(3).. 1x + 3y + 4z = 4
******************
ok.. we're going to put this into matrix form.. where we drop x, y, and z
2.. 4.. -3.. | ... -7
3.. 1.. .4.. | ... -12
1.. 3.. .4 . | ... 4
ok?
now.. I'll designate the rows (1), (2), (3).. ok?
new (1) = -2x(3) + (1)
new (2) = -3x(3) + (2)
ie...
0..-2..-11. | .. -15
0..-8.. -8.. | ... -24
1.. 3.. .4 . | ... .+4
new row (2) = old (2) / -8
0..-2..-11. | .. -15
0.. 1.. 1.. | ... +3
1.. 3.. .4 . | ... +4
new (1) = 2xold(2) + 1
new (3) = -3xold(2) + 3
0.. 0..-9 .. | ... -9
0.. 1.. 1.. | ... +3
1.. 0.. .1 . | ... -5
new row(1) = old row 1 /-9
0.. 0.. .1 .. | ... +1
0.. 1.. 1.. | ... +3
1.. 0.. .1 . | ... -5
new (2) = old(2) - old(1)
new (3) = old(3) - old(1)
0.. 0.. .1 .. | ... +1
0.. 1.. 0.. | ... +2
1.. 0.. .0 . | ... -6
so.. (x,y,z) = (-6, +2, +1)..
the last answer is correct
(2).. 3x + 1y + 4z = -12
(3).. 1x + 3y + 4z = 4
******************
ok.. we're going to put this into matrix form.. where we drop x, y, and z
2.. 4.. -3.. | ... -7
3.. 1.. .4.. | ... -12
1.. 3.. .4 . | ... 4
ok?
now.. I'll designate the rows (1), (2), (3).. ok?
new (1) = -2x(3) + (1)
new (2) = -3x(3) + (2)
ie...
0..-2..-11. | .. -15
0..-8.. -8.. | ... -24
1.. 3.. .4 . | ... .+4
new row (2) = old (2) / -8
0..-2..-11. | .. -15
0.. 1.. 1.. | ... +3
1.. 3.. .4 . | ... +4
new (1) = 2xold(2) + 1
new (3) = -3xold(2) + 3
0.. 0..-9 .. | ... -9
0.. 1.. 1.. | ... +3
1.. 0.. .1 . | ... -5
new row(1) = old row 1 /-9
0.. 0.. .1 .. | ... +1
0.. 1.. 1.. | ... +3
1.. 0.. .1 . | ... -5
new (2) = old(2) - old(1)
new (3) = old(3) - old(1)
0.. 0.. .1 .. | ... +1
0.. 1.. 0.. | ... +2
1.. 0.. .0 . | ... -6
so.. (x,y,z) = (-6, +2, +1)..
the last answer is correct
Answer:
The solution is (–6, 2, 1). (Option A)
Step-by-step explanation:
Given three equations
2x + 4y - 3z = -7 → (1)
3x + y + 4z = -12 → (2)
x + 3y + 4z = 4 → (3)
we have to find the solution of above equations.
By elimination method
Multiply equation (2) by 4 and then subtracting from (1), we get
(2x + 4y - 3z+7)-4(3x + y + 4z + 12)=0
⇒ -10x-19z=41 → (4)
Multiply equation (2) by 3 and then subtracting from (3), we get
(x + 3y + 4z - 4)-3(3x + y + 4z + 12)=0
⇒ -8x-8z=40 ⇒ x+z=-5 → (5)
Solving (4) and (5), we get
-10x-19z-41+10(x+z+5)=0
⇒ -9z=-9 ⇒ z=1
⇒ x+1=-5 ⇒ x=-6
and (3) implies -6 + 3y + 4 = 4 ⇒ y=2
Hence, the solution of above 3 equations will be (x,y,z)=(-6,2,1)
Hence, option (1) is correct.