Given the acceleration, initial velocity, and initial position of a body moving along a coordinate line at time (t), find the body's position at time (t). a=16 cos4t, v(0)=2, s(0)=5 OR See attachment. ...?

Respuesta :

I have a solution here for a problem that has the following givens: 

a=9.8, v(0)=-3, s(0)=0 


You have some integrals to find. 

** Velocity: 
Since a = dv/dt, 
dv = a dt 
∫ dv = ∫ a dt 
Given that a is a constant (a = 9.8), 
∫ dv = a ∫ dt 
v(t) = at + c₁ 
v(t) = 9t + c₁ 
c₁ is a constant, defined by the initial velocity 
v(0) = -3 
3 = 9*0 + c₁ 
⇒ c₁ = -3 
Hence: 
v(t) = 9t - 3 

** Position: 
Since v = ds/dt, 
ds = v dt 
∫ ds = ∫ v dt 
Knowing that v(t) = 9t + 3, 
∫ ds = ∫ (9t - 3) dt 
∫ ds = 9 ∫ t dt - 3 ∫ dt 
s(t) = 9t²/2 - 3t + c₂ 
c₂ is a constant, defined by the initial position 
s(0) = 0 
0 = 9*0²/2 - 3*0 + c₂ 
⇒ c₂ = 0 
Hence 
s(t) = 9t²/2 - 3t 
This equation defines the position s at time t

----------------------------------------------

I hope the methods and techniques of the solution will guide and help you in solving your own problem.

Answer:

s = - 4 cos 4t + 2t + 6.

Explanation:

a = dv/dt = 16 cos 4t ,

dv = 16 cos 4t dt

integrating on both sides

v = 16 x sin 4t /4 + c

    = 4 sin 4t + c

when t = 0 , v = 2

2 = 0 + c

c = 2

v = 4 sin 4t + 2

ds/dt = 4 sin 4t + 2

ds = ( 4 sin 4t + 2) dt

integrating on both sides

s = - 4 cos 4t/4 + 2t + k

    = - cos 4t + 2t + k

when t = 0 s = 5

5 =  -1 + 0 + k

k = 6

s = - 4 cos 4t + 2t + 6.

Ans.