Hagrid
contestada

Based on the graph shown, which of the following statements is true?


median < mode
median = mode
median > mode

Based on the graph shown which of the following statements is true median lt mode median mode median gt mode class=

Respuesta :

the median(300) = mode(300)

Answer:

Option 2 is correct.

Step-by-step explanation:

In the given graph x-axis represents the numbers and y-axis represent the frequency.

Number         Frequency              Cumulative frequency

100                        14                              14

200                       6                               20   (20<36)

300                       18                              38  (38>36)

400                       12                              50

500                       2                               52

600                       12                              64

700                       8                               72

Total                     72          

Mode is the number which has highest frequency. From the above table it is noticed that the highest frequency is 18 at 300. Therefore mode of the data is 300.

Sum of frequency is 72, which is an even number.

[tex]Median=\frac{n}{2}\text{th term}[/tex]

[tex]Median=\frac{72}{2}\text{th term}[/tex]

[tex]Median=36\text{th term}[/tex]

We have to find the number whose cumulative frequency is more than 36 but preceding cumulative frequency is less than 36.

Median of the graph is 300.

Since the value of median and mode are same, therefore

[tex]median=mode[/tex]

Option 2 is correct.