Respuesta :
Answer: [tex]12x^3-25x^2+9[/tex]
Step-by-step explanation:
Given expression: [tex](4x-3)(3x^2-4x-3)[/tex]
To simplify the above expression we apply the distributive property [ (b+c)a=ba+ca, where a,b, c be any expression] we get ,
[tex](4x-3)(3x^2-4x-3)\\\\=4x(3x^2-4x-3)-3(3x^2-4x-3)\\\\=12x^{1+2}-16x^{1+1}-12x-9x^2+12x+9.......\text{[by law of exponents]}\\\\=12x^{3}-16x^{2}-12x-9x^2+12x+9\\\\\text{Combing like terms, we get}\\\\=12x^3-(16+9)x^2-12x+12x+9\\\\=12x^3-25x^2+9[/tex]
Answer:
[tex]12x^{3}-25x^{2}+9[/tex]
Step-by-step explanation:
1. Write down the equation:
[tex](4x-3)(3x^{2}-4x-3)[/tex]
2. Multiply the first term on the left parenthesis by each term on the right parenthesis:
[tex]4x*3x^{2}=12x^{3}[/tex]
[tex]4x*(-4x)=-16x^{2}[/tex]
[tex]4x*(-3)=-12x[/tex]
3. Multiply the second term on the left parenthesis by each term on the right parenthesis:
[tex]-3*(3x^{2})=-9x^{2}[/tex]
[tex]-3*(-4x)=12x[/tex]
[tex]-3*(-3)=9[/tex]
4. Add up all the terms:
[tex]12x^{3}-16x^{2}-12x-9x^{2}+12x+9[/tex]
Simplify:
[tex]12x^{3}-25x^{2}+9[/tex]