Find x rounded to one decimal place.

The value of [tex]x[/tex] is 2.3.
Given:
The figure of a right-angle triangle.
To find:
The value of [tex]x[/tex].
Explanation:
Let us mark the vertices as shown in the attached figure.
In triangle ABD,
[tex]\sin \theta=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}[/tex]
[tex]\sin A=\dfrac{BD}{AB}[/tex]
[tex]\sin 30^\circ=\dfrac{2}{AB}[/tex]
[tex]\dfrac{1}{2}=\dfrac{2}{AB}[/tex]
On cross multiplication, we get
[tex]AB=4[/tex]
In triangle ABC,
[tex]\tan \theta=\dfrac{\text{Perpendicular}}{\text{Base}}[/tex]
[tex]\tan A=\dfrac{BC}{AB}[/tex]
[tex]\tan 30^\circ=\dfrac{x}{4}[/tex]
[tex]\dfrac{1}{\sqrt{3}}=\dfrac{x}{4}[/tex]
[tex]\dfrac{4}{\sqrt{3}}=x[/tex]
[tex]x\approx 2.3[/tex]
Therefore, the value of [tex]x[/tex] is 2.3.
Learn more:
https://brainly.com/question/21568553