Hagrid
contestada

"The figures are similar. The ratio of the lengths of their corresponding sides is 40:45, or 8:9. Find the ratio of their perimeters and the ratio of their areas. The figures are not drawn to scale.



A) 9:10 and 81:100 .. B) 8.9 and 81:100 .. C) 9:10 and 64:81 .. D) 8.9 and 64:81"

The figures are similar The ratio of the lengths of their corresponding sides is 4045 or 89 Find the ratio of their perimeters and the ratio of their areas The class=

Respuesta :

write a story ending in with the statement we apologized to each other and reconciled
Correct answer is D.

[tex]P_1=a_1+b_1+c_1 \\ \\ P_2=a_2+b_2+c_2 \\ \\a_1:a_2=b_1:b_2=c_1:c_2=8:9 \\ \\a_1= \frac{8}{9} a_2 \\ \\b_1= \frac{8}{9} b_2 \\ \\c_1= \frac{8}{9} c_2 \\ \\ \frac{P_1}{P_2}= \frac{a_1+b_1+c_1}{a_2+b_2+c_2} = \frac{\frac{8}{9}a_2+\frac{8}{9}b_2+\frac{8}{9}c_2}{a_2+b_2+c_2} =\frac{\frac{8}{9}(a_2+b_2+c_2)}{a_2+b_2+c_2} =\frac{8}{9}[/tex]

[tex]A_1= \frac{a_1b_1}{2} \\ \\A_2= \frac{a_2b_2}{2} \\ \\ \frac{A_1}{A_2} = \frac{\frac{a_1b_1}{2} }{\frac{a_2b_2}{2} } = \frac{a_1b_1} {a_2b_2 } =\frac{ \frac{8}{9} a_2\frac{8}{9} b_2} {a_2b_2 } =\frac{8}{9} \times \frac{8}{9} =\frac{64}{81} [/tex]