Respuesta :

Answer:

[tex]\displaystyle \sin\left(2\sec^{-1}\left(\frac{u}{10}\right)\right)=\frac{20\sqrt{u^2-100}}{u^2}\text{ where } u>0[/tex]

Step-by-step explanation:

We want to write the trignometric expression:

[tex]\displaystyle \sin\left(2\sec^{-1}\left(\frac{u}{10}\right)\right)\text{ where } u>0[/tex]

As an algebraic equation.

First, we can focus on the inner expression. Let θ equal the expression:

[tex]\displaystyle \theta=\sec^{-1}\left(\frac{u}{10}\right)[/tex]

Take the secant of both sides:

[tex]\displaystyle \sec(\theta)=\frac{u}{10}[/tex]

Since secant is the ratio of the hypotenuse side to the adjacent side, this means that the opposite side is:

[tex]\displaystyle o=\sqrt{u^2-10^2}=\sqrt{u^2-100}[/tex]

By substitutition:

[tex]\displaystyle= \sin(2\theta)[/tex]

Using an double-angle identity:

[tex]=2\sin(\theta)\cos(\theta)[/tex]

We know that the opposite side is √(u² -100), the adjacent side is 10, and the hypotenuse is u. Therefore:

[tex]\displaystyle =2\left(\frac{\sqrt{u^2-100}}{u}\right)\left(\frac{10}{u}\right)[/tex]

Simplify. Therefore:

[tex]\displaystyle \sin\left(2\sec^{-1}\left(\frac{u}{10}\right)\right)=\frac{20\sqrt{u^2-100}}{u^2}\text{ where } u>0[/tex]