Answer:
Option (d) is correct.
Explanation:
Let [tex]x=10^2[/tex] and [tex]y=10^{-3}[/tex].
We need to find the value of [tex]\dfrac{x}{y}[/tex].
Put the values of x and y such that,
[tex]\dfrac{x}{y}=\dfrac{10^2}{10^{-3}}\\\\=10^2\times 10^3\ (As\ \dfrac{1}{x^{-a}}=x^a)\\\\=10^5\ (As\ x^a\times x^b=x^{ab})\\\\=1\times 10^5[/tex]
So, the required answer is equal to [tex]1\times 10^5[/tex]. Hence, the correct option is (d).