Respuesta :

Given:

Radius of the cone = 6

Slant height of the cone = 10

To find:

The lateral area, surface area and volume of the cone.

Solution:

Let h be the height of the cone. By Pythagoras theorem, we get

[tex]10^2=(6)^2+h^2[/tex]

[tex]100=36+h^2[/tex]

[tex]100-36=h^2[/tex]

[tex]64=h^2[/tex]

Taking square root on both sides, we get

[tex]\sqrt{64}=h[/tex]

[tex]8=h[/tex]

The lateral area of a cone is:

[tex]A_L=\pi rl[/tex]

[tex]A_L=\pi (6)(8)[/tex]

[tex]A_L=48\pi[/tex]

The surface area of a cone is:

[tex]A_S=\pi rl+\pi r^2[/tex]

[tex]A_S=\pi (6)(8)+\pi (6)^2[/tex]

[tex]A_S=48\pi +36\pi[/tex]

[tex]A_S=84\pi[/tex]

Volume of cone is:

[tex]V=\dfrac{1}{3}\pi r^2h[/tex]

[tex]V=\dfrac{1}{3}\pi (6)^2(8)[/tex]

[tex]V=\dfrac{288}{3}\pi [/tex]

[tex]V=96\pi [/tex]

Therefore, the lateral area of a cone is [tex]48\pi[/tex] sq. units, the surface area of a cone is [tex]84\pi[/tex] sq. units and the volume of the cone is [tex]96\pi[/tex] cubic units.