Answer:
(a) [tex]Sequence: -1, 1, 3[/tex]
(b) nth term: [tex]T_n = 4+ 5n[/tex]
Step-by-step explanation:
Solving (a)
Given
[tex]T_n = 2n - 3[/tex]
The first 3 terms.
When n = 1
[tex]T_1 = 2*1 - 3[/tex]
[tex]T_1 = 2 - 3[/tex]
[tex]T_1 = -1[/tex]
When n = 2
[tex]T_2 = 2*2 - 3[/tex]
[tex]T_2 = 4 - 3[/tex]
[tex]T_2 = 1[/tex]
When n = 3
[tex]T_3 = 3*2 - 3[/tex]
[tex]T_3 = 6 - 3[/tex]
[tex]T_3= 3[/tex]
So, the first three terms are:
[tex]Sequence: -1, 1, 3[/tex]
Solving (b)
Given
[tex]Sequence: 9,14,19,24[/tex]
Required
The nth term
The sequence is arithmetic.
So, first calculate the common difference (d)
[tex]d = 14 - 9[/tex]
[tex]d = 5[/tex]
The nth term is then calculated as:
[tex]T_n = a + (n - 1) * d[/tex]
Where
[tex]a =First\ term[/tex]
So:
[tex]a = 9[/tex] and [tex]d = 5[/tex]
[tex]T_n = 9 + (n - 1) * 5[/tex]
[tex]T_n = 9 + 5n - 5[/tex]
Collect like terms
[tex]T_n = 9 - 5+ 5n[/tex]
[tex]T_n = 4+ 5n[/tex]