Respuesta :

Answer:

[tex]\left[\begin{array}{cccc}1&0&1&|-1\\-3&-9&3&|27\\3&2&0&|-2\end{array}\right][/tex]

Step-by-step explanation:

Given [Missing from the question]

[tex]\left[\begin{array}{cccc}1&0&1&|-1\\1&3&-1&|-9\\3&2&0&|-2\end{array}\right][/tex]

Required

[tex]R_2 \to -3R_2[/tex]

This implies that, we form a new matrix where the second row of the new matrix is a product of -3 and the second row of the previous matrix.

So, we have:

[tex]Initial =\left[\begin{array}{cccc}1&0&1&|-1\\1&3&-1&|-9\\3&2&0&|-2\end{array}\right][/tex]

[tex]New =\left[\begin{array}{cccc}1&0&1&|-1\\-3*1&-3*3&-3*-1&|-3*-9\\3&2&0&|-2\end{array}\right][/tex]

[tex]New =\left[\begin{array}{cccc}1&0&1&|-1\\-3&-9&3&|27\\3&2&0&|-2\end{array}\right][/tex]