Answer:
[tex]Vg=200mile/hr[/tex]
[tex]\theta=153 \textdegree[/tex]
Explanation:
From the question we are told that:
Plane airspeed [tex]v_p=190mil/h[/tex]
Plane direction [tex]\angle=150 \textdegree[/tex]
Wind current speed [tex]V_w=30mil/h[/tex]
Wind direction [tex]\angle=150 \textdegree[/tex]
Generally the vector form of the forces is mathematically given by
For plane
[tex]\angle Q_p=90-150 \textdegree[/tex]
[tex]V_p=170(cos60 \textdegree ,sin60 \textdegree)[/tex]
[tex]V_p=(85,-147.224)[/tex]
For wind
[tex]\angle Q_w=90-170 \textdegree[/tex]
[tex]V_w=30(cos-80 \textdegree ,sin-80 \textdegree)[/tex]
[tex]V_w=(5.2,-29.54)[/tex]
Generally the equation for resultant force is mathematically given by
[tex]v_r=V_a+V_w[/tex]
[tex]v_r=(85,-147.224)+(5.2,-29.54)[/tex]
[tex]v_r=(90.21,-176.76)[/tex]
[tex]v_r=198.45\angle -63[/tex]
Therefore ground speed
[tex]V_g=198.5miles/hr[/tex]
[tex]Vg=200mile/hr[/tex]
Direction
[tex]\theta=(90+63)=153 \textdegree[/tex]
[tex]\theta=153 \textdegree[/tex]