Respuesta :

Answer:

[tex]f"'(x) = 2(x-4)^2 - 1[/tex]

Step-by-step explanation:

Given

[tex]f(x) = x^2[/tex] --- the quadratic function

Vertically stretched by 2

Translation: [tex]4\ units[/tex] left and [tex]1\ unit[/tex] down

Required

Determine the new function

[tex]f(x) = x^2[/tex]

The rule for vertical stretch is:

[tex](x,y) \to (x,ay)[/tex]

In this case:

[tex]a = 2[/tex]

So, we have:

[tex]f(x) = x^2[/tex]

[tex]f'(x) = a * f(x)[/tex]

[tex]f'(x) = a * x^2[/tex]

Substitute: [tex]a = 2[/tex]

[tex]f'(x) = 2 * x^2[/tex]

[tex]f'(x) =2x^2[/tex]

Translation: 4 units left

The rule is:

[tex](x,y) \to (x - c,y)[/tex]

In this case: [tex]c =4[/tex]

So, we have:

[tex]f"(x) = 2(x - 4)^2[/tex]

Translation: 1 unit down

The rule is:

[tex](x,y) \to (x,y-d)[/tex]

In this case, [tex]d=1[/tex]

So, we have:

[tex]f"'(x) = f"(x) - 1[/tex]

[tex]f"'(x) = 2(x-4)^2 - 1[/tex]