1. A recent survey found that 64.7% of the population own their homes. In a random sample of 150 heads of households, 92 responded that they owned their homes. At the 0.01 level of significance, does that indicate a difference from the national proportion?

Respuesta :

Given :

Possible chances, x = 92

Sample size, n = 150

Success rate, [tex]$p=\frac{x}{n}$[/tex]

                          [tex]$=\frac{92}{150}=0.6133$[/tex]

Success probability, [tex]$p_o$[/tex] = 0.647

Failure probability, [tex]$q_o$[/tex] = 0.353

The null hypothesis, [tex]$H_o:p=0.647$[/tex]

The alternate hypothesis, [tex]$H_1:p!=0.647$[/tex]

Level of significance, α = 0.01

Therefore from the standard table, the two tailed z = α/2 = 2.576

Since the test is a two tailed test,

we reject the null hypothesis, i.e. [tex]$H_0$[/tex], if [tex]$z_0$[/tex] < - 2.576 or if [tex]$z_0$[/tex] > 2.576

We use the test statistics z proportion = [tex]$\frac{p-p_0}{\sqrt{\frac{p_oq_o}{n}}}$[/tex]

[tex]$z_o=\frac{0.61333-0.647}{\sqrt{\frac{0.228391}{150}}}$[/tex]

[tex]$z_o=-0.8628$[/tex]

[tex]$|z_o|=0.8628$[/tex]

The critical value,

The value of | [tex]$z_{\alpha}$[/tex] | at los 0.01% is 2.576

So we got, [tex]$|z_o|=0.8628$[/tex] and | [tex]$z_{\alpha}$[/tex] | = 2.576

Conclusion :

Therefore, the value of [tex]$|z_o|<|z_{\alpha}|$[/tex] and here we do not reject the [tex]$H_0$[/tex]

The p-value : two tailed - [tex]$H_a$[/tex] : (p! = -0.86279) = 0.38825

Hence the value of  p(0.01) < 0.3883, so here we do not reject the [tex]$H_0$[/tex].