Respuesta :

Given:-

  • Points C = (-7,2) → [tex]\sf{(X_1,Y_1)}[/tex]
  • D = (3,12) → [tex]\sf{(X_2,Y_2)}[/tex]

To Find:-

  • The Midpoint of CD.

Required Response:-

Let,

Midpoint of CD be (x,y).

WKT,

[tex]\boxed{\sf{(x,y) = \frac{X_1+X_2}{2},\frac{Y_1+Y_2}{2}}}[/tex]

[tex]→\;{\sf{\frac{-7+3}{2},\frac{2+12}{2}}}[/tex]

[tex]→\;{\sf{\frac{-4}{2},\frac{14}{2}}}[/tex]

[tex]→\;{\sf{-2,7}}[/tex]

The Midpoint of CD ◕➜ [tex]\Large{\red{\mathfrak{(-2,7)}}}[/tex]

Let,

The centre be O

Radius = CO & OD

Here, C = (-7,2) → [tex]\sf{(X_1,Y_1)}[/tex]

O = (-2,7) → [tex]\sf{(X_2,Y_2)}[/tex]

[tex]\boxed{\sf{Distance = \sqrt{(X_2-X_1)²+(Y_2-Y_1)²}}}[/tex]

[tex]→\;{\sf{\sqrt{(-2+7)²+(7-2)²}}}[/tex]

[tex]→\;{\sf{\sqrt{5²+5²}}}[/tex]

[tex]→\;{\sf{\sqrt{25+25}}}[/tex]

[tex]→\;{\sf{\sqrt{50}}}[/tex]

[tex]→\;{\sf{5√2 (or) 7.07}}[/tex]

Radius of Circle ◕➜ [tex]\Large{\red{\mathfrak{7.07}}}[/tex]

Option D.

Hope It Helps You ✌️