Answer:
0.3625
Explanation:
From the given information:
Consider the equilibrium conditions;
On the ladder, net torque= 0
Thus,
[tex]\tau_{net} = 0[/tex]; and
[tex]-fL \s in \theta +m_L g \dfrac{L}{2} cos \theta + mg (7.46\ m) cos \theta = 0[/tex]
However, by rearrangement;
[tex]fL \s in \theta =m_L g \dfrac{L}{2} cos \theta + mg (7.46\ m) cos \theta \\ \\ \mu(m_L + m) gL \ sin \theta = (323 \ N) ( 10.8 \ meters) \ cos 56^0 + (734 \ N) (7.46 \ m) \ cos \ 66.46^0[/tex]
[tex]\mu= \dfrac{ (323 \ N) ( 10.8 \ m) \ cos 56^0 + (734 \ N) (7.46 \ m) \ cos \ 66.46^0}{\Big [(323 \ N)+(734 \ N) \Big] (10.8 \ m)}[/tex]
[tex]\mathbf{\mu= 0.3625 }[/tex]