The volume of the sphere is about (blank) ft.

Answer:
[tex]14.13[/tex]
Step-by-step explanation:
V=[tex]\frac{4}{3}[/tex][tex]\pi r^{3}[/tex]
Answer:
[tex] \displaystyle V_{ \text{sphere}} =14.13 \: \rm ft^{3} [/tex]
Step-by-step explanation:
we are given the redious of a sphere
we want to figure out the volume
remember that,
[tex] \displaystyle V_{ \text{sphere}} = \frac{4}{3} \pi {r}^{3} [/tex]
since we are given the redious we can substitute
[tex] \displaystyle V_{ \text{sphere}} = \frac{4}{3} \pi { \times 1.5}^{3} [/tex]
as the approximate value of π is given
substitute:
[tex] \displaystyle V_{ \text{sphere}} = \frac{4}{3} \times 3.14 { \times 1.5}^{3} [/tex]
we know the order of PEMDAS. Parentheses, Exponent, Multiplication or Division, Addition or substraction
so
simplify square:
[tex] \displaystyle V_{ \text{sphere}} = \frac{4}{3} \times 3.14 { \times 3.375}[/tex]
reduce fraction:
[tex] \rm\displaystyle V_{ \text{sphere}} = \frac{4}{ \cancel{ 3 \: }} \times 3.14 { \times \cancel{ 3.375}} \: ^{1.125} [/tex]
[tex] \displaystyle V_{ \text{sphere}} = 4\times 3.14 \times 1.125[/tex]
simplify multiplication:
[tex] \displaystyle V_{ \text{sphere}} =14.13[/tex]
since we cubed the redious and the redious is in feet, we of course use cubic feet
[tex] \displaystyle V_{ \text{sphere}} =14.13 \: \rm ft^{3} [/tex]