Respuesta :

Answer:

[tex]14.13[/tex]

Step-by-step explanation:

V=[tex]\frac{4}{3}[/tex][tex]\pi r^{3}[/tex]

Nayefx

Answer:

[tex] \displaystyle V_{ \text{sphere}} =14.13 \: \rm ft^{3} [/tex]

Step-by-step explanation:

we are given the redious of a sphere

we want to figure out the volume

remember that,

[tex] \displaystyle V_{ \text{sphere}} = \frac{4}{3} \pi {r}^{3} [/tex]

since we are given the redious we can substitute

[tex] \displaystyle V_{ \text{sphere}} = \frac{4}{3} \pi { \times 1.5}^{3} [/tex]

as the approximate value of π is given

substitute:

[tex] \displaystyle V_{ \text{sphere}} = \frac{4}{3} \times 3.14 { \times 1.5}^{3} [/tex]

we know the order of PEMDAS. Parentheses, Exponent, Multiplication or Division, Addition or substraction

so

simplify square:

[tex] \displaystyle V_{ \text{sphere}} = \frac{4}{3} \times 3.14 { \times 3.375}[/tex]

reduce fraction:

[tex] \rm\displaystyle V_{ \text{sphere}} = \frac{4}{ \cancel{ 3 \: }} \times 3.14 { \times \cancel{ 3.375}} \: ^{1.125} [/tex]

[tex] \displaystyle V_{ \text{sphere}} = 4\times 3.14 \times 1.125[/tex]

simplify multiplication:

[tex] \displaystyle V_{ \text{sphere}} =14.13[/tex]

since we cubed the redious and the redious is in feet, we of course use cubic feet

[tex] \displaystyle V_{ \text{sphere}} =14.13 \: \rm ft^{3} [/tex]